Chapter 4: Understanding the Content

David Pugalee & Bob Rickelman
University of North Carolina-Charlotte

The contents of this publication were developed under cooperative agreement S283B050019 with the U. S. Department of Education. However, the contents do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government.
Goals and Assumptions

- No “Magic bullet” – You learn a lot through the struggle and frustration of designing modified assessments, and have more buy-in/ownership.

- All students can learn, and deserve fair assessments based on solid content standards. Concern about lower expectations leading to teaching to lower standards.

- Importance of input from general and special education teachers, as well as assessment experts, in designing content standards and assessments for all students. With Common Core Standards on the horizon, this may change.
An Example

General education teachers – experts in the **what** – What does the standard mean?
Special education teachers – experts in the **who** of teaching – How do you teach a skill to student with disabilities?
Assessment experts – experts in the **how** of assessing - How do you measure proficiency within the standard?

“Students will increase appreciative listening skills.”
Alignment of Content Standards, Curriculum and Assessments

- Assumption that content standards represent “best thinking” about what and when students should learn content.

- Curriculum should align to content standards, both in terms of scope and sequence of teaching/learning and in how skills are presented in materials (scaffolding). In most states, there are many options for choosing a curriculum. Choosing the best option for a particular school or school district involves careful planning and best thinking.

- Assessments should measure content standards learning and be aligned to similar scaffolds as curriculum (e.g., simpler sentence structure, options for variety of reading materials, controlling difficulty of passages (example below), etc.)
 - Joe went home because he was sick.
 - Joe went home. He was sick.
Example of Depth of Processing Continuum

Sample State Standard: Student will be able to understand simile and metaphor.

- Student will be able to correctly label figurative language and literal language given lists of statements.
- Student will be able to correctly identify a simile and a metaphor embedded in a paragraph of text.
- Student will be able to use an appropriate simile or a metaphor in their own written work.
- Student will be able to use a simile or a metaphor in their own written work and will be able to discuss the relevant characteristics of the word(s) being compared.

Quality Rather than Quantity Example

- Students will understand how the author’s prior experiences and childhood influence story development, and how the cultural background of the author influences character, dialogue and setting.
Students complete the tasks in a coordinate grid

1. **Recall and Reproduction.** Present student with the following points graphed on a coordinate plane: A (1, 5), B (3, 2), C (6, 2), and D (?, ?). The student is required to identify the type of quadrilateral formed by connecting the points. Students might be given possible choices such as square, rectangle, and trapezoid.

2. **Skills and Concepts/Basic Reasoning.** Plot and connect (in order) points A (1, 1), B (1, 5), C (5, 5), and D (5, 1). Students might be asked to explain or describe how they determined the type of quadrilateral that was formed.

3. **Strategic Thinking/Complex Reasoning.** Plot points A (1, 1), B (1, 5), and C (5, 5). They are then asked to plot point D such that the figure formed by connecting the points A, B, C, and D, in order, forms a rectangle. Name the coordinates for point D. Give two reasons why the figure has to be a rectangle.

4. **Extended Thinking/Reasoning.** Plot point A (1, 1). Plot three additional points and connect them such that the figure formed is a rectangle. The student is asked to describe a process for forming a rectangle given one point as a vertex. Instead of a rectangle, the process for constructing a trapezoid given one point as a vertex might be the focus.
Modification of items

- Changing the format of the assessment items
- Reducing the complexity of the language used in the item
- Providing additional information or scaffolding to reduce the cognitive load for the student

Items must maintain alignment to the grade-level content in the standard.
Potential Barriers to the Process

- To this point, development of state content standards often not scientific
- Potential mismatch among standards, curriculum, and related assessments
- General and special education teachers are often not trained to plan and teach together
 - Importance of the “team approach,” which should parallel what happens in schools
 - Key in both graduate and undergraduate teacher training